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met The conjecture that Tr[exp(A -AB)] can be written as a Laplace transform with a 
positive measure is proved for a certain class of matrices A and B. A few remarks are made 
about the undecided cases. 

quantum statistical mechanics one deals with the partition function 

Z = Tr[exp(-PHo - BA V)] 

where p and A are real and the operators Ho and V are Hermitian. J n  certain 
approximate procedures Ho and V are taken to be finite dimensional. It has been 
observed by several authors that if 2 can be written as a Laplace transform with a 
positive measure then one may use various inequalities known for the Pad6 approxi- 
manti to derive bounds for 2 (see e.g. Baker 1972a, b, Bessis 1974, Bessis et a1 1975, 
Wheeler and Gordon 1970). 

Motivated by this observation, Bessis (1975, pri&e communication) (see also 
&is er al 1975) proposed the conjecture that, if A and B are finite Hermitian 
matrices, then 

b> 

Tr[exp(A -AB)] = I e-”‘ dp(f)  dp2O (1.1) 
b e  

‘;6eredleigenvalues of B lie in the real interval (b4,  b,). 

dimensional matrices. 
Nocounter examples are known and the conjecture may even be true for infinite 

for any real numbers a and b and unit matrix I 

Tr{exp[(A + aI) - A(B + bl)]}  = exp(a -Ab) Tr(A -AB), 

mereisnolossofgenerality in assuming A and B to be positive definite. If A and B are 
‘te positive definite Hermitian matrices the conjecture (1.1) is then equivalent to 

m 

Tr[eXp(A - AB)] = e-”‘ d p  ( t )  d p  3 0. (1.2) 
0 
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198 M L Mehta and K Kumar 

Further, since the trace is invariant under a unitary transformation of the mam",& 
can take B to be diagonal. 

n e  classes of matrices for which we can prove the conjecture are described in terms 
of the graph of matrix A, assumed positive definite and brought to the reprexnQhoa 
described in the previous paragraph. 

points. m e  point i is marked with the number aii. If aij Z 0, the points i and j are joined 
by a line, which may be directed from i to j with the Value of aii marked on it 
Equivalently, one may direct the line from j to i and mark it with aji = a;. Thus there is 
a one-to-one correspondence between a matrix A and its marked graph. 

A Hermitian matrix A = [aij] of order N can be represented by a graph 

Definition 1 

A tree matrix is a matrix whose graph has no closed paths. 

Definition 2 

A matrix is said to have a real positive circuit if the product of the matrix elements taken 
along a closed path is real and positive. Similarly, a matrix is said to have a real negative 
circuit or a complex circuit according to whether the product of the matrix elemenn 
taken round a closed path is a real negative or a complex number. 

We will show in the following that equations (1.1) and (1.2) are valid if the matrixA 
has only real non-negative circuits. In particular it will be the case when 

(i) A is a tree matrix; there are no circuits, or all circuits are zero, 
(ii) the off-diagonal part of A is separable; i.e. ajk = aTak for j # k, and 

(iii) the off-diagonal elements of A are all real and positive. 

2. The proof using perturbation expansion 

The conjecture is evidently true when A and B commute. In this section we first 
6 2.1) the perturbation formula for the trace, and then prove (0 2.2) the conjecture for 
the case when A has only one off-diagonal term. This is equivalent to proving 
conjecture for all 2 X 2 matrices and introduces the procedure (0 2.3) for proving 
conjecture for cases mentioned in the introduction. In the last subsection (5 2.4) 
illustrate the difficulties of the general problem through the example of a 3 X 3 matrix. 

2.1. A perturbation series 

From the identity 

we deduce by recurrence and a change of variables the series expansion 

ex+y= 1' ...I lexuIYex+Y ... YeXunS(v,+ ... +v,-l)fidvt 
1 n-1 0 0 

(2.21 
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tu 
A -AB =X-+ Y 

MXmd Y respectively are the diagonal and off-diagonal parts: 

X = [xiaij] xi = aij - Abji ai - Abi (2.4) 

Y = [ ~ i j l  yij = a,( 1 - a..) 11 (2.5) 

d&ematrix elements on both sides of equation (2 .2):  

[ap(A -A B)Iij 
m N  

bevery n, the nth order term on the right-hand side of equation (2 .6)  above can be 
repnsented by the path ( i ,  i l ,  iz, . . . , in.-l, j )  traced on the graph of A. 

2. l'k case when A has only one non-zero off-diagonal elemeni 

U Y=O, i.e. A and B commute, then only the term n = 1 survives in the expansion 
tt.61, and we have 

I N 

Tr[exp(A -AB)] = Tr(ex) = 1 ex' = dt e-"'po(t), 
i = l  

N 
po(t)= C e u i 6 ( t - b j ) ~ 0 ,  

i = l  

w6icbhastheform stipulated by equation (i. 1). If Y # 0, then A and Y have the same 
Pph. Let Y have only one non-zero matrix element, say&,. According to expansion 
(2.6) we have to calculate 

=I . . . l  exp[x,u+x2(1-u)]dudv2. . .dv2,, 

the variables, are restricted by the conditions 

~ ~ O * W l > . . . ,  D 2 " 2 0  (u3+ug+ .  . .+v2"-l)su 

nus integral reduces to 

1 u"-'(l- U)" 

( n  - l)! n! ' 
lo du exp[xlu+x2(1-u)1 

PYbiChonWnmetrization over x1 and x2 gives 

1 '  u"-'(l - U)n-l 1 du exp[x,u +x,( 1 - U)] 
( n  -I)! n !  (2.10) 



200 M L Mehta and K Kumar 

On replacing xi by ai -Abi we have from (2.6) and (2.10) 

= I e-^'po dt + 2 CO 1' d u  exp[alu +a,(l- u)-Ab,u  
n = l  n!(n-l)! 0 

-~2(l-u)]u"-1(l-u)"-1. (2.11) 

The last relation is visibly of the form (1.1). In fact, if bl #b,,  one takes 
b,u +b2(l - U) = t as the new variable of integration and gets 

Tdexp(A-AB)]= dt e-^'(po(t)+p2(f)) (2.12) 

where p,-,(t) is given by equation (2.8) and 

bj < t < bj 
bi < t< bi 

otherwise. 

(2.14) 

(2.15) 

(2.16) 

In case bl = b2, the above substitution is singular, but then equation (2.12) isstill valid 
with 

p2(t)>0, whether it is given by equation (2.13) or by (2.17). 

2.3. The case of A having only real positive circuifi 

Now let us consider the case when A (or y) has many non-zero elements. The tennsin 
the expansion (2.6) will be of the form 

Tdexp(A -AB)] 

=I 1 lailh(2jl.. . (Ui&+* . . . UiJ.  . . 
n ii .iz, ... 

1 1 

x[ ...[ ~ ~ ~ ~ - 1 ) e x p ( x ~ , 8 v , , + x ~ ~ u ~ ~ + .  . .)dui do2 .... (2.18) 

Some of the variables of integration will not occur explicitly in the exponentid Oben 
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together as sums. In any case, introducing 

t = b i , ~ u k l + b i z ~ v k * + . . .  (2.19) 

of fie new variables of integration, we can transform the integral (2.18) to the s 0 s  

. .  I.. . I e-"'F(t, uz, u 3 , .  . . , z l r  j l , .  . .) dt  dvZ d u 3 . .  . (2.20) 

& F ~ O .  As t is a linear combination of b, with coefficients which, though variable, 
$smysiiebetween 0 and 1, the range of variation of twill be confined to the spectrum of 
8. nerefore once the integrations over the remaining vi are carried out, (2.20) will 
km the form 

) dt. (2.21) 
' b c  

Wehave left out the trivial case when substitution (2.19) is singular. 
ifA has no circuits (i.e. is a tree matrix), or if it has only real positive circuits, then all 

kaefficients outside the integral in (2.18) are positive. Every term in the series 
&on is of the form (1.1) and hence their sum is also of the same form. 

This proves the conjecture for the three cases mentioned in the introduction. 

24. lle case when A has real negative or complex circuits: example of a 3 X 3 matrix 

Thesituation is not clear when the circuits in A are not all real positive, for then there 
are tem corresponding to closed paths which may have either sign. For example, if 
~ ~ ~ a ~ a ~ ~  i t 0  and negative or complex, there are terms of the general form 

&re 

jl=Il [jI a(u + v  + w - 1) exp(xlu + x z u  + x3w) 

I 

O 

I s m t p - 1  

du dv dw (2.23) 

!lia4 ( I ,  tn, n, p )  is the number of distinct ways one can walk along the sides of the 
tnan&(l, 2,3) so as to start and finish at 1; the sides are traversed in the directions 
2 3 3 ~ 3 + 1  and 1 + 2 l + p ,  m + p  and n + p  times, and in the opposite directions 3 + 2, 
133md2+1 1, m and n times respectively. 

IbeWantitiesJz and J3 are obtained from J1 by circular permutations of (1,2,3). 
we find (see appendix) that 

U m + n + P  U n + ' + P - l  X 
(m+n + p ) !  ( n  + I + p -  l)! (1 + m + p -  l)! 

(2.24) 

(2.25) 
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Collecting the above results we have 
1 

J, + J~ + J~ = J~ J J J 6(u + U + w - 1 ) 
0 

x (vw)'(wu)"(uu)"(uuw)p-l exp(xlu+x2v+x3w) du d u  dw 
1 

=Jog (I1 S(u+u + w -  1) exp(xlu+x2~ + x3w) du du dw 
0 

with 

and Ej is given by equation (2.14). 
Summarizing the calculation of this section, for 3 x 3 matrices 

A=[::, a, a13 .=[b' d, :I 
a31 a32 a3 * b3 

and the complete perturbation series can be written as 

b, 

Tdexp(A -AB)] = I dt e-A'(po + p2 + p3) 
b e  

where 
3 

po= e"' 6 ( t - b i )  
i = l  

03 

c c 3 =  c 
i,mnp=o 

P2= c 
l ~ i C j s 3  

.)" + m, n, p ,  t) 

(2.26) 

(2.27) 

(2.28) 

(2.291 

(2.30) 

(2.31) 

(2.32) 

(2.331 

(2 .34  

(2.35) 

(2.36! 

(2.37! 

with Jo, 9, Dl237 Fij and eij given respectively by equations (2.29), (2.30), (2.32)9(2.14' 
and (2.16). 



203 On an integral representation of the function T r [ e x p ( A  -AB)] 

N& &at from equations (2.26)-(2.28) one has 

1 

= J,, I I I ~ ( u  + u + w - 1) exp(x u + x2 u + x3 w) 
0 

Um+n+p- l  U n + l + p - I  Wl+m+p--l du du dw, (2.38) 

andapplying the arguments at the end of 0 2.3 above one deduces that 
(2.39) 

bany t and any non-negative integers 1, m, n, p .  The inequality (2.39) would be hard 
todeduce from equation (2.37). 

J( l ,  m, n, p ,  t )  3 0 

Even with this we are not able to show that po+ w2 + p3 2 0. 

3. Coaoection with the theorems of Bernstein and Bochner 

Ne~ssary and sufficient conditions under which a function f ( A )  admits a representation 

arewell known. We were unable to apply the associated methods to find cases not 
overed in the previous sections. Indeed, one is led back to the same sort of manipula- 
h a n d  difficulties. It is of some interest to point out these connections. 

Bemstein's theorem that the necessary and sufficient condition that f ( A )  be of the 
fOm(3.1) is that its successive derivatives alternate in sign, i.e. 

n = 0,1,2,  . . . d" 
dA " 

(-l)"-f(A) 3 0  (3.2) 

(=e.g. Widder 1971). 

A-@ = C; then 
TO apply the theorem we construct the successive derivatives as follows. Let 

(3.3) 

By ansidering the differential equation in t satisfied by &(A, t )  we have the recursive 
rehion 

D,(A, t )  = n dt, Dn-l(A, t,)B exp[C(t- tdl 

= n i,' dt, exp[C(t - t l ) ]BDn-~(A,  h). 

anlecture to hold we should be able to prove that 

I,' 

TdDn (A, l)] 3 0 
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for all n. While the D, are Hermitian it was not possible to derive anything abut(34 
from the relations (3.4). On the other hand the iterated form 

M L Mehta and K Kumar 

D,(A, t )  = n! I,' dt, [' dt, . . . c-' df, B(t,)B(tn-J . . . B(?,)B(t,) eQ (3.6) 

where B( t )  = eaBe-" leads us back to the perturbation formula of 0 2. Indeed 
graph of C= A - AB is the same as the graph of A, since B is assumed diagonal andone 
can prove the positivity of derivatives (3.5) for the same cases as before. 

It is natura1 to consider the associated problem? utilizing Bochner's theorem. i t b  
the added interest that one uses the spectral resolution of the operators in a Way% 
suggests that the results may apply to infinite dimensional operators also. 

If we consider the function 

f ( x )  = Tdexp(A + ixB)] (3.7) 
for the real variable x and ask for the condition under which 

QD 

f(x) = I-, eixw dF( w )  d F 3  0 (3.8) 

we have Bochner's (1959) theorem. 

Bochner's theorem. 

Equation (3.8) holds if and only if 
(i) f ( x )  is continuous, 

(ji) If(x>l ~ f ( 0 )  and 
(iii) f ( x )  is positive definite, i.e. for any positive integer N, and any set of complex 

numbers &, &, . . . , tN, and real numbers x , ,  x 2 , .  . . , xN 

s =  1 f ( X , - - X B ) & g + O .  

f(0) 3 If(x)l 

I C 4 B r ; N  

Continuity is evident. One can verify also that 

by using the product representation for the exponential 

(3.91 

exp(A +ixB) = lim [exp(A/n) exp(ixB/n)]" 
n-m 

and Weyl's inequality (Weyl 1949, Thompson 1971, equation (42)) 

for s +CO. 

purposes of orientation we observe that if 

Tr(MM')' 3 ITr(MZ")I 

AS may be expected the test for positive definiteness is not easy to apply. For 

f(x) = Tr[eA cis] 

i For finite matrices, coefficients of A " in the power series expansion of Tifexp(A +AB)] a h w  ' ifw 
coefficients can be expressed as moments of a positive weight function on the full or half axis arePresentatim 
Of the form (3.8) or (1.2) will hold. 



On an integral representation of the function Tr[exp(A -AB)] 205 

rhm the conesponding S 3 0, as may be seen by using a representation in which B' is 

yt general case, using the product representation and B diagonal, 
(3.10) 

Wehave shown that the trace function admits a representation of form (1.2) for a 
oon-trivial class of matrices. In attempting to extend this class the procedure of 9 2 
Mori theone hand to combinatorial problems of some complication and on the other 
to the problem of estimating certain integrals which appear to be generalizations of 
ink& which define hypergeometric functions. 

The approach through Bernstein's theorem using recursion relations (3.4) seems to 
@e inequalities of an unusual type. 
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Let ld, 4 n , p )  be the number of ways of walking along the sides of the triangle 
(1t2t3),starting and ending the walk at corner 1, passing along sides 2+ 3, 3+ 1 and 
1+21+P, m t p  and n + p  times respectively, while in opposite directions 3 + 2 ,  1 + 3  
and2+1 1, m and n times respectively. 

1 

3 
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Also from elementary arguments one sees that 

+ ~ , ( j  -1, m-I ,  n-l,p+l.)l+G,oS,oSpo. (A.3) 
On replacing 1 by 1 - 1 and subtracting we get 

z](z, m, n, p )  = zl(Z - 1, m, n, p )  + 11 (1, m - 1, n, p>  + Z I ( A  m, n - 1, p )  + m, n, p-1) 

(A41 

('4.3 

+ Z 1 ( / -  1, m- 1, n - 1 ,  p +  l ) + S , O ~ , O S p O ~ r O .  

M l ,  m, n, p )  = 0 

The boundary conditions are 

whenever one or more of the six integers 1, m, n, 1 + p ,  m +p,  n + p  is negative, or when 
m = n = p = O a n d  I>0. 

As the value of s = Z + m + n + ( I  + p )  +(m + p )  + (n + p >  =2(1+ m + n ) + 3 p  for ea& 
term on the right-hand side of (A.4) is strictly smaller than its value for the left-& 
side, one can determine Il(Z, m, n, p) step-by-step for all integers I ,  m, n and p starting 
from 1 = m = n = p = 0. Any expression which satisfies the recurrence relation (A.4) 
and the boundary conditions (AS) will therefore be unique. The following is such an 
expression as can be verified by direct substitution: 

(Ah1 Z 1 ( l ,  m, n , p ) = K ( l ,  m, n , p ) - K U - l ,  m, 
where 

(A.71 
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